July 27, 2022
July 27, 2022
July 27, 2022
May 6, 2022
http://uknow.uky.edu/student-news/uk-grad-jacksonville-jaguar-luke-fortn...
http://uknow.uky.edu/research/14-faculty-named-2022-2023-university-rese...
March 14, 2022
https://www.wkyt.com/2022/03/14/uk-researchers-successfully-launch-space...
https://foxlexington.com/news/local/university-of-kentucky-students-and-...
https://uknow.uky.edu/research/uk-makes-history-successful-space-capsule...
March 2, 2022
From left to right: Raghava Davuluri, Page Askins, Bibin Joseph, Simon Schmidt, Jino George, Alex Zibitsker, Rick Fu, Ares Barrio, Berk Gur, Sujit Sinha, Kirsten Ford, Kristen Price, John Schmidt, Matt Ruffner, Alexandre Martin
Missing from the picture: Craig Meade, Luke Fortner, Sean McDaniel, Justin Cooper, Kate Rhoads, Tori DuPlessis, Kate MacLarney, Mohammad Khaleel
January 11, 2022
Highlights
• Particle tracking velocimetry conducted on particles shedding from ablative thermal protection system materials.
• Tests indicate spallation unaffected by pyrolysis gas formation, but impact of environment largely felt through effects due to gas composition.
• Effect of sample geometry suggested that surface shear stress plays a role in spallation particle shedding into the flow.
• An approach was devised to estimate particle diameter based on the acceleration of the particles once they left the material sample.
• Particle diameters were in the range expected for formation from both individual fibers as well as larger groups of fibers.
Price, K. J., Borchetta, C. G., Hardy, J. M., Panerai, F., Bailey, S. C. C., and Martin, A., “Arc-Jet Measurements of Low-Density Ablator Spallation,” Experimental Thermal and Fluid Science, Vol. 133, No. 110544, May 2022.
doi: 10.1016/j.expthermflusci.2021.11054
January 11, 2022
[1] Banerjee, A., Martin, A., and Poovathingal, S., “Estimating Effective Radiative Properties and In-Depth Radiative Heating of Porous Ablators,” AIAA SciTech Forum, AIAA Paper 2022-1640, Jan 2022. DOI:10.2514/6.2022-1640
[2] Cooper, J. M., Salazar, G., and Martin, A., “Numerical Investigation of Film Coefficient Engineering Methodology for Dissociated, Chemically Reacting Boundary Layers,” AIAA SciTech Forum, AIAA Paper 2022-1907, Jan 2022. DOI:10.2514/6.2022-1907
[3] Davuluri, R. S. C., Fu, R., Tagavi, K. A., and Martin, A., “Numerical investigation on the effect of spectral radiative heat transfer within an ablative material,” AIAA SciTech Forum, AIAA Paper 6.2022-1283, Jan 2022. DOI:10.2514/6.2022-1283
[4] Fortner, L., Maddox, J., and Martin, A., “Numerical investigation of an oxyacetylene torch with regards to an ablative material used in re-entry,” AIAA SciTech Forum, AIAA Paper 2022-1498, Jan 2022. DOI:10.2514/6.2022-1498
[5] Fu, R., Schmitt, S., and Martin, A., “Thermo-Chemical-Structural Modeling of Carbon Fiber Pitting and Failure Mechanism,” AIAA SciTech Forum, AIAA Paper 2022-1282, Jan 2022. DOI:10.2514/6.2022-1282
[6] Schmidt, J. D., Nichols, J. T., Ruffner, M., Nolin, R., Smith, W. T., and Martin, A., “Kentucky Re- Entry Universal Payload System (KRUPS): Design and Testing for Hypersonic Re-Entry Flight,” AIAA SciTech Forum, AIAA Paper 2022-1576, Jan 2022. DOI:10.2514/6.2022-1576
[7] Schmitt, S., Fu, R., and Martin, A., “Extension of Kinetic Monte Carlo Simulation Framework to Multilayer Graphene and Graphite Oxidation,” AIAA SciTech Forum, AIAA Paper 2022-1284, Jan 2022. DOI:10.2514/6.2022-1284
[8] Schmitt, S. and Martin, A., “Kinetic Monte Carlo Simulations of Nitrogen-Carbon Gas-Surface Reaction at High Temperatures,” AIAA SciTech Forum, AIAA Paper 10.2514/6.2022-0113, Jan 2022. DOI:10.2514/6.2022-0113
[9] Seif, M., Puppo, J., Zlatinov, M., Schaffarzick, D., Martin, A., and Beck, M., “Stochastic mechanical modeling of Duocel foam from micro- to macro- length scales,” AIAA SciTech Forum, AIAA Paper 2022-0627, Jan 2022. DOI:10.2514/6.2022-0627
[10] Zibitsker, A., McQuaid, J., Brehm, C., and Martin, A., “Development and Verification of a Mesh Deformation Scheme for a Three Dimensional Ablative Material Solver,” AIAA SciTech Forum, AIAA Paper 2022-1285, Jan 2022. DOI:10.2514/6.2022-1285
[11] Zibitsker, A., McQuaid, J., Martin, A., and Brehm, C., “Fully-Coupled Simulation of Low Temperature Ablator and Hypersonic Flow Solver.” AIAA SciTech Forum, AIAA Paper 2022-0676, Jan 2022. DOI:10.2514/6.2022-0676